منابع مشابه
On Semiprime Right Goldie Mccoy Rings
In this note we first show that for a right (resp. left) Ore ring R and an automorphism σ of R, if R is σ-skew McCoy then the classical right (resp. left) quotient ring Q(R) of R is σ̄-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (σ-skew McCoy) rings.
متن کاملGoldie Conditions for Ore Extensions over Semiprime Rings
Let R be a ring, σ an injective endomorphism of R and δ a σderivation of R. We prove that if R is semiprime left Goldie then the same holds for the Ore extension R[x;σ, δ] and both rings have the same left uniform dimension.
متن کاملOn the Goldie Dimension of Hereditary Rings and Modules
We find a bound for the Goldie dimension of hereditary modules in terms of the cardinality of the generator sets of its quasi-injective hull. Several consequences are deduced. In particular, it is shown that every right hereditary module with countably generated quasi-injective hull is noetherian. Or that every right hereditary ring with finitely generated injective hull is artinian, thus answe...
متن کاملGoldie Ranks of Skew Power Series Rings of Automorphic Type
Let A be a semprime, right noetherian ring equipped with an automorphism α, and let B := A[[y;α]] denote the corresponding skew power series ring (which is also semiprime and right noetherian). We prove that the Goldie ranks of A and B are equal. We also record applications to induced ideals.
متن کاملStability of token passing rings
A sufficient stability condition for the standard token passing ring has been "known" since the seminal paper by Kuehn in 1979. However, this condition was derived without formal proof, and the proof seems to be of considerable interest to the research community. In fact, Watson observed that in the performance evaluation of token passing rings, "it is convenient to derive stability conditions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2021
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2021.106741